Back to Search
Start Over
Experimental investigation of failure mechanism of fissure-filled sandstone under hydro-mechanical conditions.
- Source :
-
Physics of Fluids . Oct2024, Vol. 36 Issue 10, p1-12. 12p. - Publication Year :
- 2024
-
Abstract
- Fissure fillings are critical to the hydro-mechanical properties of jointed rock masses in rock engineering. In this study, triaxial seepage tests were performed on standard cylindrical fissure-filled sandstone. The characteristics of stress–strain relationships, absorption and consumption of energy, variations in deformation resistance, and permeability evolution during the experimental process, along with the crack development observed in post-failure computed tomography scan images of the sandstone specimens were analyzed. The results demonstrate that the fillings improve the energy capacity and reduce the damage accumulation of sandstone specimens, with sand-filled specimens performing better than mud-filled specimens, especially at lower bridge angles. The fillings can reduce the depth of crack extension and lessen the influence of prefabricated fissures on sandstone failure, with this effect diminishing as the rock bridge angle increases. Permeability decreases in the pre-peak failure stage as the fillings improve the deformation resistance of the sandstone specimens. In the post-peak failure stage, the fillings and rock debris generated by the sandstone failure move within the developed fractures, causing significant fluctuations in permeability. These findings deepen the understanding of the hydro-mechanical properties of jointed rocks and provide a scientific basis for stability analysis in rock engineering. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ROCK properties
*COMPUTED tomography
*ENERGY consumption
*ROCK analysis
*SANDSTONE
Subjects
Details
- Language :
- English
- ISSN :
- 10706631
- Volume :
- 36
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Physics of Fluids
- Publication Type :
- Academic Journal
- Accession number :
- 180632583
- Full Text :
- https://doi.org/10.1063/5.0230210