Back to Search Start Over

FOXP2 overexpression upregulates LAMA4 expression and thereby alleviates preeclampsia by regulating trophoblast behavior.

Authors :
Liu, Sishi
Gao, Man
Zhang, Xue
Wei, Jun
Cui, Hong
Source :
Communications Biology. 11/1/2024, Vol. 7 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

Preeclampsia (PE) is a common pregnancy disorder characterized by hypertension and proteinuria. Trophoblast behavior severely affect PE progression. Transcription factor Forkhead box protein P2 (FOXP2) was involved in cell migration and invasion, but its role in PE progression remains unknown. Laminin subunit alpha 4 (LAMA4) was predicted as a downstream gene of FOXP2 and related to PE. Thus, we supposed that FOXP2 might regulate PE by regulating LAMA4. We found the decreased FOXP2 expression in patients with PE compared with healthy pregnant women. The rat model of PE was induced by L-NAME oral gavage. FOXP2 overexpression lowered systolic and diastolic blood pressure and restored pathological changes of rats with PE. Trophoblasts under the hypoxia/reoxygenation (H/R) treatment were used to mimic PE in vitro. The results revealed that FOXP2 overexpression inhibited apoptosis but promoted migration, invasion, and angiogenesis of H/R-treated trophoblasts. Dual luciferase and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that FOXP2 transcriptionally upregulated the LAMA4 expression in trophoblasts. LAMA4 knockdown reversed the migration and invasion-promoting role of FOXP2 overexpression in trophoblasts with H/R treatment. Collectively, our findings suggest that the FOXP2/LAMA4 axis regulates PE by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis. Overexpression of FOXP2-mediated LAMA4 expression provides an insight on the preeclampsia treatment by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
7
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
180628623
Full Text :
https://doi.org/10.1038/s42003-024-07149-7