Back to Search Start Over

Scalable protein design using optimization in a relaxed sequence space.

Authors :
Frank, Christopher
Khoshouei, Ali
Fub, Lara
Schiwietz, Dominik
Putz, Dominik
Weber, Lara
Zhixuan Zhao
Motoyuki Hattori
Shihao Feng
de Stigter, Yosta
Ovchinnikov, Sergey
Dietz, Hendrik
Source :
Science Advances. 10/25/2024, Vol. 10 Issue 43, p1-7. 7p.
Publication Year :
2024

Abstract

Machine learning (ML)-based design approaches have advanced the field of de novo protein design, with diffusion-based generative methods increasingly dominating protein design pipelines. Here, we report a "hallucination"-based protein design approach that functions in relaxed sequence space, enabling the efficient design of high-quality protein backbones over multiple scales and with broad scope of application without the need for any form of retraining. We experimentally produced and characterized more than 100 proteins. Three high-resolution crystal structures and two cryo-electron microscopy density maps of designed single-chain proteins comprising up to 1000 amino acids validate the accuracy of the method. Our pipeline can also be used to design synthetic protein-protein interactions, as validated experimentally by a set of protein heterodimers. Relaxed sequence optimization offers attractive performance with respect to designability, scope of applicability for different design problems, and scalability across protein sizes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23752548
Volume :
10
Issue :
43
Database :
Academic Search Index
Journal :
Science Advances
Publication Type :
Academic Journal
Accession number :
180571155
Full Text :
https://doi.org/10.1126/science.adq1741