Back to Search Start Over

Remote sensing framework for geological mapping via stacked autoencoders and clustering.

Authors :
Nagar, Sandeep
Farahbakhsh, Ehsan
Awange, Joseph
Chandra, Rohitash
Source :
Advances in Space Research. Nov2024, Vol. 74 Issue 10, p4502-4516. 15p.
Publication Year :
2024

Abstract

Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. We present an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k -means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis (PCA) and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. The results reveal that the combination of stacked autoencoders with Sentinel-2 data yields the best performance accuracy when compared to other combinations. We find that stacked autoencoders enable better extraction of complex and hierarchical representation of the input data when compared to canonical autoencoders and PCA. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02731177
Volume :
74
Issue :
10
Database :
Academic Search Index
Journal :
Advances in Space Research
Publication Type :
Academic Journal
Accession number :
180560935
Full Text :
https://doi.org/10.1016/j.asr.2024.09.013