Back to Search Start Over

Berezin number and Berezin norm inequalities for operator matrices.

Authors :
Bhunia, Pintu
Sen, Anirban
Barik, Somdatta
Paul, Kallol
Source :
Linear & Multilinear Algebra. Nov2024, Vol. 72 Issue 16, p2749-2768. 20p.
Publication Year :
2024

Abstract

We establish new upper bounds for the Berezin number and Berezin norm of operator matrices, which are refinements of existing bounds. Among other bounds, we prove that if $ A=[A_{ij}] $ A = [ A i j ] is an $ n\times n $ n × n operator matrix with $ A_{ij}\in \mathbb {B}(\mathcal {H}) $ A i j ∈ B (H) for $ i,j=1,2,\dots, n $ i , j = 1 , 2 , ... , n , then $ \|A\|_{ber} \leq \left \|\left [\|A_{ij}\|_{ber}\right ]\right \| $ ‖ A ‖ b e r ≤ ‖ [ ‖ A i j ‖ b e r ] ‖ and $ \mathbf{ber}(A) \leq w([a_{ij}]), $ b e r (A) ≤ w ([ a i j ]) , where $ a_{ii}=\mathbf{ber}(A_{ii}), $ a i i = b e r (A i i) , $ a_{ij}=\big \||A_{ij}|+|A^*_{ji}|\big \|^{{1}/{2}}_{ber} \big \||A_{ji}|+|A^*_{ij}|\big \|^{{1}/{2}}_{ber} $ a i j = ‖ | A i j | + | A j i ∗ | ‖ b e r 1 / 2 ‖ | A j i | + | A i j ∗ | ‖ b e r 1 / 2 if i<j and $ a_{ij}=0 $ a i j = 0 if i>j. We also provide examples which illustrate these bounds for some concrete operators acting on the Hardy-Hilbert space. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03081087
Volume :
72
Issue :
16
Database :
Academic Search Index
Journal :
Linear & Multilinear Algebra
Publication Type :
Academic Journal
Accession number :
180555284
Full Text :
https://doi.org/10.1080/03081087.2023.2299388