Back to Search
Start Over
Berezin number and Berezin norm inequalities for operator matrices.
- Source :
-
Linear & Multilinear Algebra . Nov2024, Vol. 72 Issue 16, p2749-2768. 20p. - Publication Year :
- 2024
-
Abstract
- We establish new upper bounds for the Berezin number and Berezin norm of operator matrices, which are refinements of existing bounds. Among other bounds, we prove that if $ A=[A_{ij}] $ A = [ A i j ] is an $ n\times n $ n × n operator matrix with $ A_{ij}\in \mathbb {B}(\mathcal {H}) $ A i j ∈ B (H) for $ i,j=1,2,\dots, n $ i , j = 1 , 2 , ... , n , then $ \|A\|_{ber} \leq \left \|\left [\|A_{ij}\|_{ber}\right ]\right \| $ ‖ A ‖ b e r ≤ ‖ [ ‖ A i j ‖ b e r ] ‖ and $ \mathbf{ber}(A) \leq w([a_{ij}]), $ b e r (A) ≤ w ([ a i j ]) , where $ a_{ii}=\mathbf{ber}(A_{ii}), $ a i i = b e r (A i i) , $ a_{ij}=\big \||A_{ij}|+|A^*_{ji}|\big \|^{{1}/{2}}_{ber} \big \||A_{ji}|+|A^*_{ij}|\big \|^{{1}/{2}}_{ber} $ a i j = ‖ | A i j | + | A j i ∗ | ‖ b e r 1 / 2 ‖ | A j i | + | A i j ∗ | ‖ b e r 1 / 2 if i<j and $ a_{ij}=0 $ a i j = 0 if i>j. We also provide examples which illustrate these bounds for some concrete operators acting on the Hardy-Hilbert space. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MATRIX norms
*HILBERT space
*MATRIX inequalities
Subjects
Details
- Language :
- English
- ISSN :
- 03081087
- Volume :
- 72
- Issue :
- 16
- Database :
- Academic Search Index
- Journal :
- Linear & Multilinear Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 180555284
- Full Text :
- https://doi.org/10.1080/03081087.2023.2299388