Back to Search Start Over

Estimation of Regional Electricity Consumption Using National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite Night-Time Light Data with Gradient Boosting Regression Trees.

Authors :
Guo, Xiaozheng
Wang, Yimei
Source :
Remote Sensing. Oct2024, Vol. 16 Issue 20, p3841. 19p.
Publication Year :
2024

Abstract

With the rapid development of society and economy, the growth of electricity consumption has become one of the important indicators to measure the level of regional economic development. This paper utilizes NPP-VIIRS nighttime light remote sensing data to model electricity consumption in parts of southern China. Four predictive models were initially selected for evaluation: LR, SVR, MLP, and GBRT. The accuracy of each model was assessed by comparing real power consumption with simulated values. Based on this evaluation, the GBRT model was identified as the most effective and was selected to establish a comprehensive model of electricity consumption. Using the GBRT model, this paper analyzes electricity consumption in the study area across different spatial scales from 2013 to 2022, demonstrating the distribution characteristics of electricity consumption from the pixel level to the city scale and revealing the close relationship between electricity consumption and regional economic development. Additionally, this paper examines trends in electricity consumption across various temporal scales, providing a scientific basis for the optimal allocation of energy and the effective distribution of power resources in the study area. This analysis is of great significance for promoting balanced economic development between regions and enhancing energy efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
20
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
180486695
Full Text :
https://doi.org/10.3390/rs16203841