Back to Search Start Over

Dynamic Spatial-Temporal Memory Augmentation Network for Traffic Prediction.

Authors :
Zhang, Huibing
Xie, Qianxin
Shou, Zhaoyu
Gao, Yunhao
Source :
Sensors (14248220). Oct2024, Vol. 24 Issue 20, p6659. 17p.
Publication Year :
2024

Abstract

Traffic flow prediction plays a crucial role in the development of smart cities. However, existing studies face challenges in effectively capturing spatio-temporal contexts, handling hierarchical temporal features, and understanding spatial heterogeneity. To better manage the spatio-temporal correlations inherent in traffic flow, we present a novel model called Dynamic Spatio-Temporal Memory-Augmented Network (DSTMAN). Firstly, we design three spatial–temporal embeddings to capture dynamic spatial–temporal contexts and encode the unique characteristics of time units and spatial states. Secondly, these three spatial–temporal components are integrated to form a multi-scale spatial–temporal block, which effectively extracts hierarchical spatial–temporal dependencies. Finally, we introduce a meta-memory node bank to construct an adaptive neighborhood graph, implicitly representing spatial relationships and enhancing the learning of spatial heterogeneity through a secondary memory mechanism. Evaluation on four public datasets, including METR-LA and PEMS-BAY, demonstrates that the proposed model outperforms benchmark models such as MTGNN, DCRNN, and AGCRN. On the METR-LA dataset, our model reduces the MAE by 4% compared to MTGNN, 6.9% compared to DCRNN, and 5.8% compared to AGCRN, confirming its efficacy in traffic flow prediction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
20
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
180486253
Full Text :
https://doi.org/10.3390/s24206659