Back to Search Start Over

Study on Mechanical and Microstructural Evolution of P92 Pipes During Long-Time Operation.

Authors :
Tang, Liying
Yang, Zheyi
Cui, Xionghua
Zhang, Lei
Li, Jiang
Source :
Materials (1996-1944). Oct2024, Vol. 17 Issue 20, p5092. 14p.
Publication Year :
2024

Abstract

To investigate the mechanical properties and microstructure evolution of P92 steel during long-term service, the operated P92 main steam pipes from the first ultra-supercritical units in China were sectioned into samples representing various service durations and stresses (0# (as-received state, 1# (82,000 h, 67.3 MPa), 2# (85,000 h, 78.0 MPa), and 3# (100,000 h, 80.3 MPa)). Thereafter, a comprehensive assessment of their mechanical properties, including tensile strength, impact, hardness, and creep resistance, as well as a detailed microstructure analysis, was carried out. The effect of stress on the aging of material properties during operation is discussed. The results show that the circumferential stress caused by the increase in the internal steam pressure can significantly promote the creep life consumption of P92 steel, resulting in the degradation of mechanical properties and the expedited aging of the microstructure. The Rp0.2 and Rm of the P92 main steam pipe at room temperature and 605 °C decreased with the service time increase, reflecting the influence of stress in operation, which is expected to be used for the residual life evaluation of P92 steel. The relationship between the impact absorption energy (FATT50), Brinell hardness, and the operating time of P92 operating pipes is non-monotonic, indicating that these parameters are not sensitive indicators of material aging due to stress. The evaluation of performance degradation in P92 operating pipes due to stress-induced aging is not reliably discernible through optical metallography alone. To achieve a thorough assessment, the use of transmission electron microscopy (TEM) is essential. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
20
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
180486052
Full Text :
https://doi.org/10.3390/ma17205092