Back to Search Start Over

Ultrasound-assisted heterogeneous process for organic dye pollutants destruction using the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite catalyst from water medium.

Authors :
Sadeghi, Meysam
Zarshenas, Pourya
Source :
Journal of Environmental Health Science & Engineering. Dec2024, Vol. 22 Issue 2, p483-501. 19p.
Publication Year :
2024

Abstract

The heterogeneous sonocatalysis is considered as an impressive remediation approach to eliminate the dyeing wastewaters. Among the efficient sonocatalytic remediation, nanocomposite sonocatalysts have grabbed special attention in recent years. In the presence research, the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite as a magnetically retrievable catalyst was elaborated using the ultrasound-assisted hydrothermal route and its sonocatalytic performance was tested applying the methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO) organic dyes under US/H2O2 system. The as-fabricated nanocomposite is well identified via FESEM, TEM, EDX, EDX elemental dot mappings, AFM, FTIR, XRD, BET, UV-Vis DRS, and VSM. The sonocatalytic destruction outcomes have demonstrated that the MIL-101(Fe)/ZrO2/MnFe2O4 shows appreciable performance for the destruction of MB, RhB, CR, and MO with the yields of 98.17%, 96.35%, 93.40%, and 89.82%, respectively under the optimized conditions of irradiation time of 7 min, dye concentration of 25 mg/L, catalyst amount of 10 mg, US power intensity of 100 W, H2O2 concentration of 4 mM, pH of 7, and temperature of 25 ± 1 °C. The fitted kinetic curves were exhibited a first-order model and the half-life time (t1/2) and reaction rate constant (kapp) of the MB sonodestruction were determined to be 1.20 min and 0.5768 min−1 employing the MIL-101(Fe)/ZrO2/MnFe2O4/US/H2O2 system, respectively. The free •OH radicals were having a crucial role in the MB sonodestruction reaction, affirmed via quenching the experiments. Besides, the reusing experiments indicate that the MIL-101(Fe)/ZrO2/MnFe2O4 represents propitious stability and long durability and reminded more than 93% after four cycles. The metal-organic framework MIL-101(Fe)/ZrO2/MnFe2O4 heterojunction magnetically retrievable nanocomposite was successfully prepared and used as a new sonocatalyst for the destruction of MB, RhB, CR, and MO toxic organic dye pollutants from water medium. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2052336X
Volume :
22
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Environmental Health Science & Engineering
Publication Type :
Academic Journal
Accession number :
180457016
Full Text :
https://doi.org/10.1007/s40201-024-00906-0