Back to Search
Start Over
Insights into physiological roles of flavonoids in plant cold acclimation.
- Source :
-
Plant Journal . Oct2024, p1. 17p. 7 Illustrations. - Publication Year :
- 2024
-
Abstract
- SUMMARY Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non‐aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2‐week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09607412
- Database :
- Academic Search Index
- Journal :
- Plant Journal
- Publication Type :
- Academic Journal
- Accession number :
- 180443695
- Full Text :
- https://doi.org/10.1111/tpj.17097