Back to Search Start Over

Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs.

Authors :
Guo, Xiangyue
Shang, Zhenda
Li, Qianxi
Wang, Lixue
Zhang, Ying
Liu, Suozhu
Cao, Yunhe
Dong, Bing
Source :
BMC Microbiology. 10/22/2024, Vol. 24 Issue 1, p1-18. 18p.
Publication Year :
2024

Abstract

Background: With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. Result: The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712180
Volume :
24
Issue :
1
Database :
Academic Search Index
Journal :
BMC Microbiology
Publication Type :
Academic Journal
Accession number :
180428482
Full Text :
https://doi.org/10.1186/s12866-024-03588-8