Back to Search Start Over

The fnr‐like mutants confer isoxaben tolerance by initiating mitochondrial retrograde signalling.

Authors :
Broad, Ronan C.
Ogden, Michael
Dutta, Arka
Dracatos, Peter M.
Whelan, James
Persson, Staffan
Khan, Ghazanfar Abbas
Source :
Plant Biotechnology Journal. Nov2024, Vol. 22 Issue 11, p3000-3011. 12p.
Publication Year :
2024

Abstract

Summary: Isoxaben is a pre‐emergent herbicide used to control broadleaf weeds. While the phytotoxic mechanism is not completely understood, isoxaben interferes with cellulose synthesis. Certain mutations in cellulose synthase complex proteins can confer isoxaben tolerance; however, these mutations can cause compromised cellulose synthesis and perturbed plant growth, rendering them unsuitable as herbicide tolerance traits. We conducted a genetic screen to identify new genes associated with isoxaben tolerance by screening a selection of Arabidopsis thaliana T‐DNA mutants. We found that mutations in a FERREDOXIN‐NADP(+) OXIDOREDUCTASE‐LIKE (FNRL) gene enhanced tolerance to isoxaben, exhibited as a reduction in primary root stunting, reactive oxygen species accumulation and ectopic lignification. The fnrl mutant did not exhibit a reduction in cellulose levels following exposure to isoxaben, indicating that FNRL operates upstream of isoxaben‐induced cellulose inhibition. In line with these results, transcriptomic analysis revealed a highly reduced response to isoxaben treatment in fnrl mutant roots. The fnrl mutants displayed constitutively induced mitochondrial retrograde signalling, and the observed isoxaben tolerance is partially dependent on the transcription factor ANAC017, a key regulator of mitochondrial retrograde signalling. Moreover, FNRL is highly conserved across all plant lineages, implying conservation of its function. Notably, fnrl mutants did not show a growth penalty in shoots, making FNRL a promising target for biotechnological applications in breeding isoxaben tolerance in crops. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14677644
Volume :
22
Issue :
11
Database :
Academic Search Index
Journal :
Plant Biotechnology Journal
Publication Type :
Academic Journal
Accession number :
180410792
Full Text :
https://doi.org/10.1111/pbi.14421