Back to Search Start Over

Identification of genetic association between mitochondrial dysfunction and knee osteoarthritis through integrating multi-omics: a summary data-based Mendelian randomization study.

Authors :
Xie, Jiale
Ma, Rui
Xu, Xin
Yang, Mingyi
Yu, Hui
Wan, Xianjie
Xu, Ke
Guo, Junfei
Xu, Peng
Source :
Clinical Rheumatology. Nov2024, Vol. 43 Issue 11, p3487-3496. 10p.
Publication Year :
2024

Abstract

Objective: Association between mitochondrial dysfunction and osteoarthritis (OA) has been consistently investigated, yet their genetic association remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data of knee OA (KOA) were used as outcome to examine their genetic association. Methods: We obtained 1136 mitochondrial-related genes from the human MitoCarta3.0 database. Genetic proxy instruments for mitochondrial-related genes from studies of corresponding gene expression (n = 31,684) and protein (n = 35,559) quantitative trait locus (eQTLs and pQTLs), respectively. Aggregated data for KOA (62,497 KOA cases and 333,557 controls) were extracted from the largest OA genome-wide association study (GWAS). We integrated QTL data with KOA GWAS data to estimate their genetic association using summary data-based Mendelian randomization analysis (SMR). Additionally, we implemented Bayesian colocalization analysis to reveal whether suggestive mitochondrial-related genes and KOA were driven by a same genetic variant. Finally, to validate the primary findings, replication study (24,955 cases and 378,169 controls) and multi-SNP-based SMR (SMR-multi) test was performed. Results: Through SMR analysis, we found that the expression levels of 2 mitochondrial-related genes were associated with KOA risk. Specifically, elevated gene expression levels of the IMMP2L (odds ratio [OR] = 1.056; 95% confidence interval [CI] = 1.030–1.082; P-FDR = 0.004) increased the risk of KOA. Conversely, increased gene expression levels of AKAP10 decreased the risk of KOA (OR = 0.955; 95% CI, 0.934–0.977; P-FDR = 0.019). Colocalization analysis demonstrated that AKAP10 (PP.H4 = 0.84) and IMMP2L (PP.H4 = 0.91) shared the same genetic variant with KOA. In addition, consistent results were found in replication study and SMR-multi test, further demonstrating the reliability of our findings. Conclusions: In summary, our analyses revealed the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA, providing new insight into potential pathogenesis of KOA. Furthermore, these identified candidate genes offer the possibility of clinical drug target development for KOA. Key points • This is the first SMR study to explore the genetic association between mitochondrial dysfunction proxied by mitochondrial-related genes and KOA. • Sufficient evidence to support genetic association between the expression levels of AKAP10 and IMMP2L, and KOA • Our MR analysis may provide novel new insight into potential pathogenesis of KOA. • These identified candidate genes offer the possibility of clinical drug target development for KOA [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07703198
Volume :
43
Issue :
11
Database :
Academic Search Index
Journal :
Clinical Rheumatology
Publication Type :
Academic Journal
Accession number :
180373868
Full Text :
https://doi.org/10.1007/s10067-024-07136-7