Back to Search Start Over

Transverse size effect of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 film for one- and two-dimensional integrated sensors by simulation.

Authors :
Liang, Cao
Gong, Zhentao
Wang, Simin
Wei, Mianhao
Zhang, Qiaozhen
Duan, Zhihua
Wang, Tao
Tang, Yanxue
Zhao, Xiangyong
Wang, Feifei
Source :
Ceramics International. Nov2024:Part B, Vol. 50 Issue 22, p46246-46251. 6p.
Publication Year :
2024

Abstract

In this work, the transverse size effect of the new-generation relaxor ferroelectric Pb(In 1/2 Nb 1/2)O 3 -Pb(Mg 1/3 Nb 2/3)O 3 -PbTiO 3 (PIMNT) thin film was studied by finite element method, aiming to revealing the lateral size and shape dependence of the piezoelectric, dielectric, and pyroelectric behavior for guiding one- and two-dimensional integrated array sensor applications. The results indicated that as the aspect ratio (width to thickness ratio) decreased from 100 to 0.01, for both one-dimensional rectangular and two-dimensional square PIMNT array elements, a sharp increase in piezoelectric and dielectric constants could be observed for the PIMNT with <001> direction while a slight increase could be found for those along <111> orientation, exhibiting a strong orientation dependence. In comparison, the PIMNT with <110> direction exhibited strong shape dependence. The piezoelectric and dielectric constants of <110>-oriented square element increased more remarkably than those of the rectangular one. The pyroelectric coefficients of PIMNT exhibited weak shape dependence, decreasing from 8.5 × 10−4 C/(m2·K) to about 8.0 × 10−4 C/(m2·K) for both element shapes with transverse size decreasing. These findings give insight into the transverse size and shape effect on the new-generation PIMNT thin film and provide a guide for its design in one- and two-dimensional piezoelectric and pyroelectric array sensor applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
50
Issue :
22
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
180334265
Full Text :
https://doi.org/10.1016/j.ceramint.2024.08.466