Back to Search Start Over

Detonation Burning of a Kerosene–Air Mixture in a Radial Vortex Chamber with Geometry Variations at the Entrance and Exit.

Authors :
Bykovskii, F. A.
Zhdan, S. A.
Vedernikov, E. F.
Source :
Combustion, Explosion, & Shock Waves. Apr2024, Vol. 60 Issue 2, p193-205. 13p.
Publication Year :
2024

Abstract

Regimes of detonation burning of a two-phase mixture consisting of TS-1 aviation kerosene and air in a radial vortex chamber 500 mm in diameter with exhaustion toward the center and geometry variations at the combustor entrance and exit are obtained and studied. Air is injected into the combustor through a vortex injector, and kerosene bubbled with air is injected through oppositely directed channels. Optical registration of the process is performed through transparent windows in the combustor by a high-speed camera with a frequency of 420 000 fps. The flow pattern observed in the combustor with free exhaustion and an expanding nozzle is continuous spin detonation with one detonation wave rotating with a velocity of 1.68–2.17 km/s close to the Chapman–Jouguet detonation velocity or pulsed detonation with radial waves with a frequency of 0.14–0.26 kHz. Mounting of radial partitions yields pulsed detonation or combustion. In continuous spin detonation, the air flow rate is 3.6–11.7 kg/s, the kerosene flow rate is 0.2–0.77 kg/s, and the equivalence ratio varies from 0.63 to 2.5. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00105082
Volume :
60
Issue :
2
Database :
Academic Search Index
Journal :
Combustion, Explosion, & Shock Waves
Publication Type :
Academic Journal
Accession number :
180332100
Full Text :
https://doi.org/10.1134/S0010508224020060