Back to Search Start Over

Investigation of the Interfacial Fusion Bonding on Hybrid Additively Manufactured Components under Torsional Load.

Authors :
Kizak, Melike
von Bartschikowski, Anna
Trauth, Anna
Heigl, Christian
Drechsler, Klaus
Source :
Polymers (20734360). Oct2024, Vol. 16 Issue 19, p2719. 12p.
Publication Year :
2024

Abstract

Hybrid manufacturing processes integrate multiple manufacturing techniques to leverage their respective advantages and mitigate their limitations. This study combines additive manufacturing and injection molding, aiming to efficiently produce components with extensive design flexibility and functional integration. The research explores the interfacial fusion bonding of hybrid additively manufactured components under torsional loading. Specifically, it examines the impact of various surface treatments on injection molded parts and the influence of different build chamber temperatures during additive manufacturing on torsional strength. Polycarbonate components, neat, with glass or carbon fiber-reinforcement, are produced and assessed for dimensional accuracy, torsional strength, and fracture behavior. The findings emphasize the critical role of surface treatment for the injection molded components before additive manufacturing. Additionally, the study identifies the influence of chamber temperatures on both dimensional accuracy and torsional strength. Among all investigated materials, plasma-treated neat samples exhibited the best torsional strength. The torsional strength was increased by up to 87 % by actively heating the build chamber to 186 °C for neat polycarbonate. These insights aim to advance the quality and performance of hybrid additively manufactured components, broadening their application potential across diverse fields. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
19
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
180276823
Full Text :
https://doi.org/10.3390/polym16192719