Back to Search Start Over

Curcumin-Based Molecularly Imprinted Polymer Electropolymerized on Single-Use Graphite Electrode for Dipyridamole Analysis.

Authors :
Preda, Daniel
Radu, Gabriel Lucian
Iorgulescu, Emilia-Elena
Cheregi, Mihaela-Carmen
David, Iulia Gabriela
Source :
Molecules. Oct2024, Vol. 29 Issue 19, p4630. 20p.
Publication Year :
2024

Abstract

A new molecularly imprinted polymer (MIP)-based disposable electrochemical sensor for dipyridamole (DIP) determination was obtained. The sensor was rapidly prepared by potentiodynamic electrochemical polymerization on a pencil graphite electrode (PGE) using curcumin (CUR) as a functional monomer and DIP as a template molecule. After the optimization of the conditions (pH, monomer–template ratio, scan rate, number of cyclic voltammetric cycles applied in the electro-polymerization process and extraction time of the template molecule) for MIP formation, DIP voltammetric behavior at the modified electrode (MIP_PGE) was investigated. DIP oxidation took place in a pH-dependent, irreversible mixed diffusion-adsorption controlled process. Differential pulse voltammetry (DPV) and adsorptive stripping differential pulse voltammetry (AdSDPV) were used to quantify DIP from pharmaceutical and tap water samples. Under optimized conditions (Britton–Robinson buffer at pH = 3.29), the obtained linear ranges were 5.00 × 10−8–1.00 × 10−5 mol/L and 5.00 × 10−9–1.00 × 10−7 mol/L DIP for DPV and AdSDPV, respectively. The limits of detection of the methods were 1.47 × 10−8 mol/L for DPV and 3.96 × 10−9 mol/L DIP for AdSDPV. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
19
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
180274617
Full Text :
https://doi.org/10.3390/molecules29194630