Back to Search Start Over

Gold/DNA-Cu 2+ Complex Nanozyme-Based Aptamer Lateral Flow Assay for Highly Sensitive Detection of Kanamycin.

Authors :
Li, Xiuping
Chang, Rui
Tai, Shengmei
Mao, Minxin
Peng, Chifang
Source :
Molecules. Oct2024, Vol. 29 Issue 19, p4569. 9p.
Publication Year :
2024

Abstract

Aptamer-based lateral flow analysis (Apt-LFAs) has promising applications in many fields. Nanozymes have demonstrated high potential in improving the performance of Apt-LFAs and have been increasingly utilized in recent studies. In this study, we developed a nanozyme-based Apt-LFA for the rapid and sensitive detection of kanamycin by using a novel dual-functionalized AuNPs@polyA-DNA/GpG-Cu2+ nanozyme as a nanoprobe. In the nanoprobe design, the polyA-cDNA strand can discriminate a kanamycin aptamer from the kanamycin/aptamer complex, and the GpG-Cu2+ complex can amplify the detection signal by catalyzing the chromogenic reaction. The nanozyme Apt-LFA can quantify kanamycin in the range of 1–250 ng/mL with an LOD of 0.08 ng/mL, which demonstrated a 4-fold sensitivity improvement and had a wider linear range than the conventional AuNP-based LFA. The Apt-LFA was successfully applied to the detection of kanamycin in honey with good recoveries. Our dual-functionalized AuNP nanoprobe is easily prepared and can be highly compatible with the conventional AuNP-DNA-based LFA platform; thus, it can be extended to the application of Apt-LFAs for other small molecules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
19
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
180274546
Full Text :
https://doi.org/10.3390/molecules29194569