Back to Search
Start Over
Optimization of the Microstructure and Mechanical Properties of a TC4 Alloy Joint Brazed with a Zr-Based Filler Containing a Co Element.
- Source :
-
Materials (1996-1944) . Oct2024, Vol. 17 Issue 19, p4861. 11p. - Publication Year :
- 2024
-
Abstract
- Herein, we fabricated a low-melting-point Zr-16Ti-6Cu-8Ni-6Co eutectic filler based on a Zr-Ti-Cu-Ni filler to achieve effective joining of a Ti6Al4V (TC4) titanium alloy. The temperature at which the brittle intermetallic compound (IMC) layer in the seam completely disappeared was reduced from 920 °C to 900 °C, which broadened the temperature range of the Zr-based filler, brazing the TC4 without a brittle IMC layer. The shear strength of the Zr-16Ti-6Cu-8Ni-6Co brazed joint increased by 113% more than that of the Zr-16Ti-9Cu-11Ni brazed joint at 900 °C. The proportion of β-Ti in the seam of the Zr-16Ti-6Cu-8Ni-6Co brazed joint increased by 21.31% compared with that of the Zr-16Ti-9Cu-11Ni brazed joint. The nano-indentation results show that the elastic modulus of the β-Ti (143 GPa) in the interface is lower than that of the α-Ti (169 GPa) and (Ti,Zr)2(Ni,Cu,Co) (203 GPa). As a result, the β-Ti is subjected to a greater strain under the same stress state compared with the α-Ti and (Ti,Zr)2(Ni,Cu,Co), and the Zr-16Ti-6Cu-8Ni-6Co brazed joint can maintain a higher strength than the Zr-16Ti-9Cu-11Ni brazed joint under a middle–low erosion area of the TC4 base metal. This provides valuable insights into the use of high-strength, fatigue-resistant TC4 brazed joints in engineering applications. [ABSTRACT FROM AUTHOR]
- Subjects :
- *INTERMETALLIC compounds
*BRAZING
*TITANIUM alloys
*SHEAR strength
*ELASTIC modulus
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 17
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Materials (1996-1944)
- Publication Type :
- Academic Journal
- Accession number :
- 180272805
- Full Text :
- https://doi.org/10.3390/ma17194861