Back to Search Start Over

Frost Resistance and Microscopic Properties of Recycled Coarse Aggregate Concrete Containing Chemical Admixtures.

Authors :
Song, Yongyuan
Zhou, Wenjuan
Zhang, Chen
Yang, Can
Source :
Materials (1996-1944). Oct2024, Vol. 17 Issue 19, p4687. 19p.
Publication Year :
2024

Abstract

In order to increase the suitability of coarse recycled concrete aggregates and improve the frost resistance of recycled coarse aggregate concrete, this study aims to investigate the effects of an antifreeze-type water-reducing admixture, air-entraining admixture, and antifreeze admixture on the frost resistance of recycled coarse aggregate concrete. The effectiveness of these admixtures is gauged by the mass loss rate and the relative dynamic modulus of elasticity (RDM). Mercury-impressed porosimetry (MIP), super depth of field microscopy, and scanning electron microscopy (SEM) were employed to characterize the hydration products, microstructure, and pore structure of recycled coarse aggregate concrete, with a view to establishing a connection between the microstructural characteristics and the macro properties and analyzing the micro-mechanism of the improvement effect of frost resistance. The test results demonstrate that the admixtures have a significant impact on the frost resistance of recycled coarse aggregate concrete. In particular, the recycled coarse aggregate concrete with an antifreeze admixture (dosage of 1%) and a water–cement ratio of 0.41 exhibited a mass loss of only 1.23% after 200 freezing and thawing cycles, a relative dynamic modulus of elasticity of up to 93.97%; however, the control group had reached the stopping condition at 150 freeze–thaw cycles with more than 10% mass loss. The recycled coarse aggregate concrete with added antifreeze admixture had a tight connection between the aggregate and the paste and a more pronounced improvement in the pore structure, indicating excellent resistance to frost damage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
19
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
180272631
Full Text :
https://doi.org/10.3390/ma17194687