Back to Search Start Over

The impact of halo-pelvic traction on sagittal kyphosis in the treatment of severe scoliosis and kyphoscoliosis.

Authors :
Liang, Yan
Zhu, Zhenqi
Zhao, Chong
Xu, Shuai
Guo, Chen
Zhao, Deng
Liu, Haiying
Source :
Journal of Orthopaedic Surgery & Research. 10/15/2024, Vol. 19 Issue 1, p1-7. 7p.
Publication Year :
2024

Abstract

Background: Halo-pelvic traction (HPT) is acknowledged for enhancing pulmonary function and reducing neurological complications in severe and rigid scoliosis and kyphoscoliosis. While its role in improving coronal balance is established, its impact on sagittal kyphosis remains under-researched. This study aims to assess HPT's effects on sagittal alignment in these conditions. Methods: A retrospective review of 37 patients with severe and rigid scoliosis or kyphoscoliosis was conducted to evaluate HPT's efficacy. The analysis focused on the impact of HPT on coronal and sagittal parameters, pulmonary function tests (PFTs) and complications. Radiographic assessments included main cobb angle in coronal, sagittal major kyphosis. Results: HPT was applied for an average of 2.9 months, significantly reducing the primary coronal curve from 127.7°±30.3° to 74.9°±28.3° (P < 0.05), achieving a 41.3% correction rate. Sagittal kyphosis correction was more pronounced, with angles decreasing from 80.4°±26.4° to 41.3°±24.4° (P < 0.05), resulting in a 48.6% correction rate. Pulmonary function tests showed improvements in forced vital capacity (FVC) (from 1.32 ± 0.91 to 1.55 ± 0.83) and forced expiratory volume in 1 s (FEV1) (from 1.03 ± 0.76 to 1.28 ± 0.72), with percentage predicted values also increasing (FVC%: 40.4%±24.3–51.4%±23.1%; FEV1%: 37.8%±25.2–48.1%±22.7%; all P < 0.05). Conclusion: HPT effectively reduces spinal deformity severity and improves pulmonary function in patients with severe and rigid scoliosis and kyphoscoliosis. Sagittal kyphosis correction was notably greater than coronal scoliosis correction. The correlation between PFT improvements and coronal curve adjustments suggests that correcting the coronal Cobb angle is pivotal for pulmonary function enhancement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1749799X
Volume :
19
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Orthopaedic Surgery & Research
Publication Type :
Academic Journal
Accession number :
180253548
Full Text :
https://doi.org/10.1186/s13018-024-04985-5