Back to Search
Start Over
A Case Study on The Evaluation of Maturity Class in Potato Breeding Trials Using UAV Imagery.
- Source :
-
American Journal of Potato Research . Oct2024, Vol. 101 Issue 5, p376-393. 18p. - Publication Year :
- 2024
-
Abstract
- In potato breeding, maturity class (MC) is a crucial selection criterion because this is a critical aspect of commercial potato production. Currently, the classification of potato genotypes into MCs is done visually, which is time- and labor-consuming. The objective of this research was to use vegetation indices (VIs) derived from unmanned aerial vehicle (UAV) imagery to remotely assign MCs to potato plants grown in trials, representing three different early stages within a multi-year breeding program. The relationships between VIs (GOSAVI – Green Optimized Soil Adjusted Vegetation Index, MCARI2 – Modified Chlorophyll Absorption Index-Improved, NDRE – Normalized Difference Red Edge, NDVI – Normalized Difference Vegetation Index, and OSAVI – Optimized Soil Adjusted Vegetation Index and WDVI – Weighted Difference Vegetation Index) and visual potato canopy status were determined. Further, this study aimed to identify factors that could improve the accuracy (decrease Mean Absolute Error – MAE) of potato MC estimation remotely. Results show that VIs derived from UAV imagery can be effectively used to remotely assign MCs to potato breeding lines, with higher accuracy for the potato B-clones (20 plants per plot) than the A-clones (6 plants per plot). Among the tested VIs, the NDRE allowed for potato MC evaluation with the lowest MAE. Applying NDRE for remote MC estimation using a validation dataset of potato B-clones (100 plants per plot), resulted in an MC estimate with a 0.81 MAE. However, the accuracy of potato MC estimation using UAV image-based methods should be improved by reducing the potato canopy's variability (increasing uniformity) within the plot. This could be achieved by minimizing 1) potato vines bending over the neighboring row, causing vine overlap between plots, and 2) plants damaged by tractor wheels during field operations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1099209X
- Volume :
- 101
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- American Journal of Potato Research
- Publication Type :
- Academic Journal
- Accession number :
- 180235398
- Full Text :
- https://doi.org/10.1007/s12230-024-09965-3