Back to Search Start Over

A novel ER stress regulator ARL6IP5 induces reticulophagy to ameliorate the prion burden.

Authors :
Kamble, Kajal
Kumar, Ujjwal
Aahra, Harsh
Yadav, Mohit
Bhola, Sumnil
Gupta, Sarika
Source :
Autophagy. Oct2024, p1-21. 21p. 9 Illustrations.
Publication Year :
2024

Abstract

Prion disease is a fatal and infectious neurodegenerative disorder caused by the trans-conformation conversion of PRNP/PrPC to PRNP/PrPSc. Accumulated PRNP/PrPSc-induced ER stress causes chronic unfolded protein response (UPR) activation, which is one of the fundamental steps in prion disease progression. However, the role of various ER-resident proteins in prion-induced ER stress is elusive. This study demonstrated that ARL6IP5 is compensatory upregulated in response to chronically activated UPR in the cellular prion disease model (RML-ScN2a). Furthermore, overexpression of ARL6IP5 overcomes ER stress by lowering the expression of chronically activated UPR pathway proteins. We discovered that ARL6IP5 induces reticulophagy to reduce the PRNP/PrPSc burden by releasing ER stress. Conversely, the knockdown of ARL6IP5 leads to inefficient macroautophagic/autophagic flux and elevated PRNP/PrPSc burden. Our study also uncovered that ARL6IP5-induced reticulophagy depends on Ca2+-mediated AMPK activation and can induce 3 MA-inhibited autophagic flux. The detailed mechanistic study revealed that ARL6IP5-induced reticulophagy involves interaction with soluble reticulophagy receptor CALCOCO1 and lysosomal marker LAMP1, leading to degradation in lysosomes. Here, we delineate the role of ARL6IP5 as a novel ER stress regulator and reticulophagy inducer that can effectively reduce the misfolded PRNP/PrPSc burden. Our research opens up a new avenue of selective autophagy in prion disease and represents a potential therapeutic target.<bold>Abbreviations</bold>: ARL6IP5: ADP ribosylation factor-like GTPase 6 interacting protein 5; AMPK: adenosine 5’-monophosphate (AMP)-activated protein kinase; CALCOCO1: calcium binding and coiled-coil domain 1; CQ: chloroquine; DAPI: 4’6-diamino-2-phenylindole; ER: endoplasmic reticulum; ERPHS: reticulophagy/ER-phagy sites; KD: knockdown; KD-CON: knockdown control; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MβCD: methyl beta cyclodextrin; 3 MA: 3-methyladenine; OE: overexpression; OE-CON: empty vector control; PrDs: prion diseases; PRNP/PrPC: cellular prion protein (Kanno blood group); PRNP/PrPSc: infectious scrapie misfolded PRNP; Tm: tunicamycin; UPR: unfolded protein response; UPS: ubiquitin-proteasome system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15548627
Database :
Academic Search Index
Journal :
Autophagy
Publication Type :
Academic Journal
Accession number :
180225427
Full Text :
https://doi.org/10.1080/15548627.2024.2410670