Back to Search
Start Over
Weather patterns determine success rates of two biocontrol agents on Cytisus scoparius in the USA.
- Source :
-
Entomologia Experimentalis et Applicata . Nov2024, Vol. 172 Issue 11, p1024-1032. 9p. - Publication Year :
- 2024
-
Abstract
- To be effective, a biocontrol agent must survive and persist in the same habitat as the target species and reduce target population growth. When multiple biocontrol agents are used against a single invasive species, they may each perform better under a subset of the habitat in which the target lives. This complementarity allows for a more consistent level of control and a higher resilience to environmental variability. Two species that feed on the same plant tissues would compete, but niche partitioning in the native range may be replicated when both species are introduced to the invasive range. When biocontrol agents are released, they may self‐sort to perform best in their respective niches. We hypothesized that two biocontrol agents—Scotch broom seed beetle, Bruchidius villosus (Fabricius) (Coleoptera: Chrysomelidae) and Scotch broom seed weevil, Exapion fuscirostre (Fabricius) (Coleoptera: Brentidae)—that both feed on seeds of the invasive legume Scotch broom, Cytisus scoparius L. Link (Fabaceae), would be impacted differently by different weather conditions and plant traits, and would show different success rates at field sites with different conditions. We used a 5‐year study to reveal that the two biocontrol agents are not uniformly distributed in the field and that weather and plant factors influence their success. We confirmed that weather conditions of the previous year influenced biocontrol agent attack rate and found that weather patterns at a field site may predict the impact of each biocontrol agent. [ABSTRACT FROM AUTHOR]
- Subjects :
- *WEED control
*LEGUME seeds
*BRUCHIDAE
*INTRODUCED species
*PLANT cells & tissues
Subjects
Details
- Language :
- English
- ISSN :
- 00138703
- Volume :
- 172
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- Entomologia Experimentalis et Applicata
- Publication Type :
- Academic Journal
- Accession number :
- 180150112
- Full Text :
- https://doi.org/10.1111/eea.13494