Back to Search Start Over

Weather patterns determine success rates of two biocontrol agents on Cytisus scoparius in the USA.

Authors :
Bode, Robert Frederick
Cervantez, Olivia
Source :
Entomologia Experimentalis et Applicata. Nov2024, Vol. 172 Issue 11, p1024-1032. 9p.
Publication Year :
2024

Abstract

To be effective, a biocontrol agent must survive and persist in the same habitat as the target species and reduce target population growth. When multiple biocontrol agents are used against a single invasive species, they may each perform better under a subset of the habitat in which the target lives. This complementarity allows for a more consistent level of control and a higher resilience to environmental variability. Two species that feed on the same plant tissues would compete, but niche partitioning in the native range may be replicated when both species are introduced to the invasive range. When biocontrol agents are released, they may self‐sort to perform best in their respective niches. We hypothesized that two biocontrol agents—Scotch broom seed beetle, Bruchidius villosus (Fabricius) (Coleoptera: Chrysomelidae) and Scotch broom seed weevil, Exapion fuscirostre (Fabricius) (Coleoptera: Brentidae)—that both feed on seeds of the invasive legume Scotch broom, Cytisus scoparius L. Link (Fabaceae), would be impacted differently by different weather conditions and plant traits, and would show different success rates at field sites with different conditions. We used a 5‐year study to reveal that the two biocontrol agents are not uniformly distributed in the field and that weather and plant factors influence their success. We confirmed that weather conditions of the previous year influenced biocontrol agent attack rate and found that weather patterns at a field site may predict the impact of each biocontrol agent. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00138703
Volume :
172
Issue :
11
Database :
Academic Search Index
Journal :
Entomologia Experimentalis et Applicata
Publication Type :
Academic Journal
Accession number :
180150112
Full Text :
https://doi.org/10.1111/eea.13494