Back to Search Start Over

Guest‐Induced Thermally Activated Delayed Fluorescence Organic Supramolcular Macrocycle Scintillators for High‐Resolution X‐Ray Imaging.

Authors :
Zhang, Guozhen
Chen, Fuhai
Di, Yiming
Yuan, Siqi
Zhang, Yang
Quan, Xin
Chen, Yong
Chen, Hongming
Lin, Meijin
Source :
Advanced Functional Materials. 10/8/2024, Vol. 34 Issue 41, p1-9. 9p.
Publication Year :
2024

Abstract

Organic scintillators, pivotal in security and medical applications, face challenges due to limited X‐ray absorption and exciton utilization. Herein, a novel class of organic scintillators is introduced, named guest‐induced thermally activated delayed fluorescence (TADF) within supramolecular macrocycles via host‐guest through‐space charge transfer (TSCT). Four co‐crystals are obtained through orthogonal crystallizations involving calix[3]acridan (C[3]A) and calix[3]phenothiazine (C[3]P) macrocycles as hosts, along with 1,2‐dicyanobenzene (DCB) and 4‐bromo‐1,2‐benzenedicarbonitrile (BrDCB) as guests. Interestingly, DCB@C[3]A and BrDCB@C[3]A co‐crystals exhibit strong host‐guest TSCT with reduced single‐triplet energy gap for efficient TADF emission, which leads to enhanced exciton utilization and X‐ray absorption, yielding radioluminescence intensities over 29 and 25 times higher than C[3]A. Similarly, substituting C[3]A with C[3]P, the obtained TADF co‐crystals also outperform C[3]P in scintillation performance. Additionally, the scintillation color of co‐crystals can be adjusted by varying the electron‐donating abilities of macrocycles and the electron‐accepting abilities of guests, offering a simpler color‐tuning mechanism than covalent‐bonded scintillators. Furthermore, the flexible film based on DCB@C[3]A exhibits promising application in X‐ray radiography, showcasing a high spatial resolution of 20 lp mm−1 @MTF = 0.77. The innovative strategy of fabricating organic scintillators via reversible non‐covalent interactions presents a novel solution for designing color‐tunable and high‐performance scintillators. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
41
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
180150018
Full Text :
https://doi.org/10.1002/adfm.202404123