Back to Search Start Over

Enhanced Saccharification Yield of Alkali Pretreated Sugarcane Bagasse Utilizing Customized Cellulase Cocktail from Trichoderma harzianum and Trichoderma viride.

Authors :
Kumar, Ravi
Kumar, Nitin
Gupta, Ravi
Source :
International Journal of Economic Plants. Aug2024, Vol. 11 Issue 3, p263-269. 7p.
Publication Year :
2024

Abstract

The experiment was conducted during 2023 at Bioenergy Laboratory, Department of RBEE, College of Agricultural Engineering and Technology, CCSHAU, Hisar, Haryana, India. Compositional changes in sugarcane bagasse subjected to varying concentrations of sodium hydroxide (0.3% to 1.2%), revealing significant increases in glucan content (from 37.13% to 53.81%) alongside decreases in xylan, acidinsoluble lignin, acid-soluble lignin, ash, and other extractives. These changes were validated using microscopic technique SEM, confirming the efficacy of the pretreatment process. The utilization of a customized cellulase cocktail derived from Trichoderma harzianum and Trichoderma viride holds significant promise in enhancing the saccharification from alkali-pretreated sugarcane bagasse. This study investigates the synergistic effects of cellulase enzymes produced by these fungi on the hydrolysis of lignocellulosic biomass. The enzymatic hydrolysis process is optimized by varying enzyme dosages, reaction conditions, and incubation times to maximize the release of fermentable sugars. Results indicate a substantial improvement in saccharification efficiency with the customized cellulase cocktail, highlighting its potential for sustainable biofuel production. The pretreated sugarcane bagasse, when saccharified with Trichoderma harzianum and Trichoderma viride individually, released 254.43 mg g-1 and 325.53 mg g-1 of reducing sugars, respectively, after 40 h of incubation. In contrast, the combined enzymatic cocktail achieved a substantial increase in glucose yields (345.12 mg g-1) at 40 h, showcasing the synergistic effect of the combined enzymatic activity. This research contributes to advancing bioconversion technologies for utilizing lignocellulosic biomass resources efficiently and economically, thus addressing key challenges in sustainable energy production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23494727
Volume :
11
Issue :
3
Database :
Academic Search Index
Journal :
International Journal of Economic Plants
Publication Type :
Academic Journal
Accession number :
180124924
Full Text :
https://doi.org/10.23910/2/2024.5388a