Back to Search Start Over

Development of non-invasive biomarkers for pre-eclampsia through data-driven cardiovascular network models.

Authors :
Popp, Claudia
Carson, Jason M.
Drysdale, Alex B.
Arora, Hari
Johnstone, Edward D.
Myers, Jenny E.
van Loon, Raoul
Source :
Scientific Reports. 10/4/2024, Vol. 14 Issue 1, p1-8. 8p.
Publication Year :
2024

Abstract

Computational models can be at the basis of new powerful technologies for studying and classifying disorders like pre-eclampsia, where it is difficult to distinguish pre-eclamptic patients from non-pre-eclamptic based on pressure when patients have a track record of hypertension. Computational models now enable a detailed analysis of how pregnancy affects the cardiovascular system. Therefore, new non-invasive biomarkers were developed that can aid the classification of pre-eclampsia through the integration of six different measured non-invasive cardiovascular signals. Datasets of 21 pregnant women (no early onset pre-eclampsia, n = 12; early onset pre-eclampsia, n = 9) were used to create personalised cardiovascular models through computational modelling resulting in predictions of blood pressure and flow waveforms in all major and minor vessels of the utero-ovarian system. The analysis performed revealed that the new predictors PPI (pressure pulsatility index) and RI (resistance index) calculated in arcuate and radial/spiral arteries are able to differentiate between the 2 groups of women (t-test scores of p <.001) better than PI (pulsatility index) and RI (Doppler calculated in the uterine artery) for both supervised and unsupervised classification. In conclusion, two novel high-performing biomarkers for the classification of pre-eclampsia have been identified based on blood velocity and pressure predictions in the smaller placental vasculatures where non-invasive measurements are not feasible. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
180105320
Full Text :
https://doi.org/10.1038/s41598-024-72832-y