Back to Search Start Over

Investigation of Energy Deposition by Soft X-rays into Solar Cell Materials.

Authors :
Abouhussien, Youssef
Miloshevsky, Gennady
Source :
Nuclear Science & Engineering. Oct2024, p1-10. 10p. 9 Illustrations, 1 Chart.
Publication Year :
2024

Abstract

AbstractA high-altitude nuclear detonation releases a significant portion of energy as X-rays with a blackbody spectrum. Satellites are particularly vulnerable to prompt soft X-rays (~1 keV) absorbed within a few microns of the surface of the solar array, causing melting and evaporation of its materials. The absorption of soft X-rays in solar cell materials is studied using GEANT4 computer software. Energy deposition as a function of depth (depth-dose profile) is calculated for slab geometries of dielectric and metallic materials. The photo-absorption and Compton scattering of X-rays and the contribution of secondary radiation, such as photo-electrons, Auger-electrons, and fluorescence photons are taken into account. The effect of the production of secondary radiation on the distribution of deposited dose in the near-surface region of materials is investigated. The results presented in this work are validated against published data and provide valuable insights into X-ray absorption by solar cell materials, the redistribution of energy by secondary radiation, and the spatial scale of power density deposition that can be used as a source term for the further thermomechanical analysis of a material’s phase transformations and melting. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00295639
Database :
Academic Search Index
Journal :
Nuclear Science & Engineering
Publication Type :
Academic Journal
Accession number :
180028613
Full Text :
https://doi.org/10.1080/00295639.2024.2399456