Back to Search Start Over

Genome Mining for Diazo-Synthesis-Related Genes in Streptomyces sp. CS057 Unveiled the Cryptic Biosynthetic Gene Cluster crx for the Novel 3,4-AHBA-Derived Compound Crexazone 2.

Authors :
Prado-Alonso, Laura
Ye, Suhui
Pérez-Victoria, Ignacio
Montero, Ignacio
Riesco, Pedro
Ortiz-López, Francisco Javier
Martín, Jesús
Olano, Carlos
Reyes, Fernando
Méndez, Carmen
Source :
Biomolecules (2218-273X). Sep2024, Vol. 14 Issue 9, p1084. 20p.
Publication Year :
2024

Abstract

Natural products play a crucial role in drug development, addressing the escalating microbial resistance to antibiotics and the treatment of emerging diseases. Progress in genome sequencing techniques, coupled with the development of bioinformatics tools and the exploration of uncharted habitats, has highlighted the biosynthetic potential of actinomycetes. By in silico screening for diazo-related gene genomes from twelve Streptomyces strains isolated from Attini leaf-cutting ants, the new crx biosynthetic gene cluster (BGC) was identified in Streptomyces sp. CS057. This cluster, highly conserved in several Streptomyces strains, contains genes related to diazo group formation and genes for the biosynthesis of 3,4-AHBA. By overexpressing the LuxR-like regulatory gene crxR1, we were able to activate the crx cluster, which encodes the biosynthesis of three 3,4-AHBA-derived compounds that we named crexazones (CRXs). The chemical structure of crexazones (CRXs) was determined by LC-DAD-HRMS-based dereplication and NMR spectroscopic analyses and was found to correspond to two known compounds, 3-acetamido-4-hydroxybenzoic acid (CRX1) and the phenoxazinone texazone (CRX3), and a novel 3,4-AHBA-containing compound herein designated as CRX2. Experimental proof linking the crx BGC to their encoded compounds was achieved by generating mutants in selected crx genes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2218273X
Volume :
14
Issue :
9
Database :
Academic Search Index
Journal :
Biomolecules (2218-273X)
Publication Type :
Academic Journal
Accession number :
180015580
Full Text :
https://doi.org/10.3390/biom14091084