Back to Search Start Over

A Review on the Application of Deep Eutectic Solvents in Polymer-Based Membrane Preparation for Environmental Separation Technologies.

Authors :
Marco-Velasco, Gorka
Gálvez-Subiela, Alejandro
Jiménez-Robles, Ramón
Izquierdo, Marta
Cháfer, Amparo
Badia, José David
Source :
Polymers (20734360). Sep2024, Vol. 16 Issue 18, p2604. 49p.
Publication Year :
2024

Abstract

The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production of the DESs, and a wide range of DESs' physicochemical characteristics, such as density, surface tension, viscosity, and melting temperature, are initially gathered. Furthermore, the most popular techniques for creating membranes have been demonstrated and discussed, with a focus on the non-solvent induced phase separation (NIPS) method. Additionally, a number of studies have been reported in which DESs were employed as pore formers, solvents, additives, or co-solvents, among other applications. The addition of DESs to the manufacturing process increased the presence of finger-like structures and macrovoids in the cross-section and, on numerous occasions, had a substantial impact on the overall porosity and pore size. Performance data were also gathered for membranes made for various separation technologies, such as ultrafiltration (UF) and nanofiltration (NF). Lastly, DESs provide various options for the functionalization of membranes, such as the creation of various liquid membrane types, with special focus on supported liquid membranes (SLMs) for decarbonization technologies, discussed in terms of permeability and selectivity of several gases, including CO2, N2, and CH4. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
16
Issue :
18
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
180009613
Full Text :
https://doi.org/10.3390/polym16182604