Back to Search
Start Over
Proton Therapy Adaptation of Perisinusoidal and Brain Areas in the Cyclotron Centre Bronowice in Krakow: A Dosimetric Analysis.
- Source :
-
Cancers . Sep2024, Vol. 16 Issue 18, p3128. 16p. - Publication Year :
- 2024
-
Abstract
- Simple Summary: Adaptive proton therapy (APT) is an evolving approach to proton beam scanning treatment planning. We performed dosimetric study on two groups of head and neck (H&N) patients to evaluate the influence of plan adaptation on planning target volume (PTV) and organs at risk (OARs) doses, resulting from the changes in patient anatomy observed in control computed tomography (CT). The adapted treatment plans, which incorporated the changes observed in the control CT images, statistically improved mostly PTV coverage compared to initial plan. Study shows that applying adaptive procedures in clinical workflow may increased efficiency by controlling the proper irradiation of the treated area for H&N cancer patients. Applying a proton beam in radiotherapy enables precise irradiation of the tumor volume, but only for continuous assessment of changes in patient anatomy. Proton beam range uncertainties in the treatment process may originate not only from physical beam properties but also from patient-specific factors such as tumor shrinkage, edema formation and sinus filling, which are not incorporated in tumor volume safety margins. In this paper, we evaluated variations in dose distribution in proton therapy resulting from the differences observed in the control tomographic images and the dosimetric influence of applied adaptive treatment. The data from weekly computed tomography (CT) control scans of 21 patients, which serve as the basis for adaptive radiotherapy, were used for this study. Dosimetric analysis of adaptive proton therapy (APT) was performed on patients with head and neck (H&N) area tumors who were divided into two groups: patients with tumors in the sinus/nasal area and patients with tumors in the brain area. For this analysis, the reference treatment plans were forward-calculated using weekly control CT scans. A comparative evaluation of organ at risk (OAR) dose-volume histogram (DVH) parameters, as well as conformity and homogeneity indices, was conducted between the initial and recalculated dose distributions to assess the necessity of the adaptation process in terms of dosimetric parameters. Changes in PTV volume after replanning were observed in seventeen patient cases, showing a discrepancy of over 1 cm 3 in ten cases. In these cases, tumor progression occurred in 30% of patients, while regression was observed in 70%. The statistical analysis indicates that the use of the adaptive planning procedure results in a statistically significant improvement in dose distribution, particularly in the PTV area. The findings led to the conclusion that the adaptive procedure provides significant advantages in terms of dose distribution within the treated volume. However, when considering the entire patient group, APT did not result in a statistically significant dose reduction in OARs (α = 0.05). [ABSTRACT FROM AUTHOR]
- Subjects :
- *BRAIN anatomy
*PROTON therapy
*DOSE-response relationship (Radiation)
*PHARMACEUTICAL arithmetic
*THREE-dimensional imaging
*DATA analysis
*RESEARCH funding
*HEAD & neck cancer
*BRAIN
*COMPUTED tomography
*TOMOGRAPHY
*TREATMENT effectiveness
*RADIATION dosimetry
*RETROSPECTIVE studies
*DESCRIPTIVE statistics
*MEDICAL records
*ACQUISITION of data
*STATISTICS
*COMPARATIVE studies
*DATA analysis software
*NONPARAMETRIC statistics
*BRAIN tumors
Subjects
Details
- Language :
- English
- ISSN :
- 20726694
- Volume :
- 16
- Issue :
- 18
- Database :
- Academic Search Index
- Journal :
- Cancers
- Publication Type :
- Academic Journal
- Accession number :
- 180008805
- Full Text :
- https://doi.org/10.3390/cancers16183128