Back to Search Start Over

Evaluation of Ecological Environment Quality Using an Improved Remote Sensing Ecological Index Model.

Authors :
Liu, Yanan
Xiang, Wanlin
Hu, Pingbo
Gao, Peng
Zhang, Ai
Source :
Remote Sensing. Sep2024, Vol. 16 Issue 18, p3485. 23p.
Publication Year :
2024

Abstract

The Remote Sensing Ecological Index (RSEI) model is widely used for large-scale, rapid Ecological Environment Quality (EEQ) assessment. However, both the RSEI and its improved models have limitations in explaining the EEQ with only two-dimensional (2D) factors, resulting in inaccurate evaluation results. Incorporating more comprehensive, three-dimensional (3D) ecological information poses challenges for maintaining stability in large-scale monitoring, using traditional weighting methods like the Principal Component Analysis (PCA). This study introduces an Improved Remote Sensing Ecological Index (IRSEI) model that integrates 2D (normalized difference vegetation factor, normalized difference built-up and soil factor, heat factor, wetness, difference factor for air quality) and 3D (comprehensive vegetation factor) ecological factors for enhanced EEQ monitoring. The model employs a combined subjective–objective weighting approach, utilizing principal components and hierarchical analysis under minimum entropy theory. A comparative analysis of IRSEI and RSEI in Miyun, a representative study area, reveals a strong correlation and consistent monitoring trends. By incorporating air quality and 3D ecological factors, IRSEI provides a more accurate and detailed EEQ assessment, better aligning with ground truth observations from Google Earth satellite imagery. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
18
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
180008468
Full Text :
https://doi.org/10.3390/rs16183485