Back to Search Start Over

Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates.

Authors :
Laipelt, Leonardo
Rossi, Julia Brusso
de Andrade, Bruno Comini
Scherer-Warren, Morris
Ruhoff, Anderson
Source :
Remote Sensing. Sep2024, Vol. 16 Issue 18, p3404. 15p.
Publication Year :
2024

Abstract

The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
18
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
180008387
Full Text :
https://doi.org/10.3390/rs16183404