Back to Search
Start Over
Soliton interaction in a two-temperature electron plasma with trapping and superthermality effects.
- Source :
-
Physics of Fluids . Sep2024, Vol. 36 Issue 9, p1-10. 10p. - Publication Year :
- 2024
-
Abstract
- Head-on collision of the two small-amplitude electron-acoustic (EA) solitons is studied in an unmagnetized collisionless plasma in the presence of superthermal (hot) trapped electrons. For this purpose, using a well-known extended Poincare–Lighthill–Kuo (PLK) method, a pair of the trapped Korteweg–de Vries (tKdV) equations is derived to investigate the soliton trajectories and phase shifts. The latter are found dependent on amplitudes of the interacting solitons, effectively altering with hot-electron superthermality and plasma parameters. Typical parameters for the electron diffusion region (EDR) and day-side auroral zone have been selected to examine the impact of hot-electron superthermality, trapping parameter, hot-to-cold electron number density ratio, and cold-to-hot electron temperature ratio on the profiles of potential excitations and phase shifts of interacting solitons. It is found that phase speed of the EA waves becomes altered by varying the κ – parameter, strongly modifying the nonlinearity and dispersive coefficients in a superthermal trapped plasma. However, particle trapping phenomenon does not affect the linear phase speed but introduces a fractional nonlinearity in the tKdV equations of two interacting solitons. The impact of the adiabatic and isothermal pressures is also highlighted to show new modifications in the propagation characteristics of two interacting solitons. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10706631
- Volume :
- 36
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- Physics of Fluids
- Publication Type :
- Academic Journal
- Accession number :
- 180002985
- Full Text :
- https://doi.org/10.1063/5.0223332