Back to Search Start Over

Disentangling the Unusual Magnetic Anisotropy of the Near‐Room‐Temperature Ferromagnet Fe4GeTe2.

Authors :
Pal, Riju
Abraham, Joyal John
Mistonov, Alexander
Mishra, Swarnamayee
Stilkerich, Nina
Mondal, Suchanda
Mandal, Prabhat
Pal, Atindra Nath
Geck, Jochen
Büchner, Bernd
Kataev, Vladislav
Alfonsov, Alexey
Source :
Advanced Functional Materials. 9/18/2024, Vol. 34 Issue 38, p1-13. 13p.
Publication Year :
2024

Abstract

In the quest for 2D conducting materials with high ferromagnetic ordering temperature the new family of the layered FenGeTe2 compounds, especially the near‐room‐temperature ferromagnet Fe4GeTe2, receives a significant attention. Fe4GeTe2 features a peculiar spin reorientation transition at TSR ≈ 110 K suggesting a non‐trivial temperature evolution of the magnetic anisotropy (MA)—one of the main contributors to the stabilization of the magnetic order in the low‐dimensional systems. An electron spin resonance (ESR) spectroscopic study reported here provides quantitative insights into the unusual magnetic anisotropy of Fe4GeTe2. At high temperatures the total MA is mostly given by the demagnetization effect with a small contribution of the counteracting intrinsic magnetic anisotropy of an easy‐axis type, whose growth below a characteristic temperature Tshape ≈ 150 K renders the sample seemingly isotropic at TSR. Below one further temperature Td ≈ 50 K the intrinsic MA becomes even more complex. Importantly, all the characteristic temperatures found in the ESR experiment match those observed in transport measurements, suggesting an inherent coupling between magnetic and electronic degrees of freedom in Fe4GeTe2. This finding together with the observed signatures of the intrinsic two‐dimensionality should facilitate optimization routes for the use of Fe4GeTe2 in the magneto‐electronic devices, potentially even in the monolayer limit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
38
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
179998458
Full Text :
https://doi.org/10.1002/adfm.202402551