Back to Search
Start Over
An LMI-based robust state-feedback controller design for the position control of a knee rehabilitation exoskeleton robot: Comparative analysis.
- Source :
-
Measurement & Control (0020-2940) . Oct2024, Vol. 57 Issue 9, p1326-1346. 21p. - Publication Year :
- 2024
-
Abstract
- Rehabilitation exoskeleton robots play a crucial role in restoring functional lower limb movements for individuals with locomotor disorders. Numerous research studies have concentrated on adapting the control of these rehabilitation robotic systems. In this study, we investigate an affine state-feedback control law for robust position control of a knee exoskeleton robot, taking into account its nonlinear dynamic model that includes solid and viscous frictions. To ensure robust stabilization, we employ the Lyapunov approach and propose three methods to establish stability conditions using the Schur complement, the Young inequality, the matrix inversion lemma, and the S-procedure lemma. These conditions are formulated as Linear Matrix Inequalities (LMIs). Furthermore, we conduct a comprehensive comparison among these methods to determine the most efficient approach. At the end of this work, we present simulation results to validate the developed LMI conditions and demonstrate the effectiveness of the adopted control law in achieving robust position control of the knee exoskeleton robot. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00202940
- Volume :
- 57
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- Measurement & Control (0020-2940)
- Publication Type :
- Academic Journal
- Accession number :
- 179994955
- Full Text :
- https://doi.org/10.1177/00202940241236295