Back to Search Start Over

Role of β-adrenergic signaling and the NLRP3 inflammasome in chronic intermittent hypoxia-induced murine lung cancer progression.

Authors :
Sun, Jianxia
Jia, Xinyun
Zhang, Zhiqiang
Yang, Yang
Zhai, Chuntao
Zhao, Baosheng
Liu, Yuzhen
Source :
Respiratory Research. 9/28/2024, Vol. 25 Issue 1, p1-15. 15p.
Publication Year :
2024

Abstract

Background: Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a prevalent condition that has been associated with various forms of cancer. Although some clinical studies suggest a potential link between OSA and lung cancer, this association remains uncertain, and the underlying mechanisms are not fully understood. This study investigated the role of the catecholamine-β-adrenergic receptor (βAR) and the NLRP3 inflammasome in mediating the effects of CIH on lung cancer progression in mice. Methods: Male C57BL/6 N mice were subjected to CIH for four weeks, with Lewis lung carcinoma cells seeded subcutaneously. Propranolol (a βAR blocker) or nepicastat (an inhibitor of catecholamine production) was administered during this period. Tumor volume and tail artery blood pressure were monitored. Immunohistochemical staining and immunofluorescence staining were employed to assess protein expression of Ki-67, CD31, VEGFR2, PD-1, PD-L1, and ASC specks in tumor tissues. ELISA was used to detect catecholamine and various cytokines, while western blot assessed the expression of cyclin D1, caspase-1, and IL-1β. In vitro tube formation assay investigated angiogenesis. NLRP3 knockout mice were used to determine the mechanism of NLRP3 in CIH. Results: CIH led to an increase in catecholamine. Catecholamine-βAR inhibitor drugs prevented the increase in blood pressure caused by CIH. Notably, the drugs inhibited CIH-induced murine lung tumor growth, and the expression of Ki-67, cyclin D1, CD31, VEGFR2, PD-1 and PD-L1 in tumor decreased. In vitro, propranolol inhibits tube formation induced by CIH mouse serum. Moreover, CIH led to an increase in TNF-α, IL-6, IL-1β, IFN-γ and sPD-L1 levels and a decrease in IL-10 in peripheral blood, accompanied by activation of NLRP3 inflammasomes in tumor, but these effects were also stopped by drugs. In NLRP3-knockout mice, CIH-induced upregulation of PD-1/PD-L1 in tumor was inhibited. Conclusions: Our study underscores the significant contribution of β-adrenergic signaling and the NLRP3 inflammasome to CIH-induced lung cancer progression. These pathways represent potential therapeutic targets for mitigating the impact of OSA on lung cancer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14659921
Volume :
25
Issue :
1
Database :
Academic Search Index
Journal :
Respiratory Research
Publication Type :
Academic Journal
Accession number :
179969407
Full Text :
https://doi.org/10.1186/s12931-024-02969-x