Back to Search Start Over

Reinforcement learning-based estimation for spatio-temporal systems.

Authors :
Mowlavi, Saviz
Benosman, Mouhacine
Source :
Scientific Reports. 9/28/2024, Vol. 14 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

State estimators such as Kalman filters compute an estimate of the instantaneous state of a dynamical system from sparse sensor measurements. For spatio-temporal systems, whose dynamics are governed by partial differential equations (PDEs), state estimators are typically designed based on a reduced-order model (ROM) that projects the original high-dimensional PDE onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equations with parametric uncertainties, we show that in the limit of very few sensors, the trained RL-ROE outperforms a Kalman filter designed using the same ROM and yields accurate instantaneous estimates of high-dimensional states corresponding to unknown initial conditions and physical parameter values. The RL-ROE opens the door to lightweight real-time sensing of systems governed by parametric PDEs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
179968933
Full Text :
https://doi.org/10.1038/s41598-024-72055-1