Back to Search
Start Over
Research on Lightweight Method of Insulator Target Detection Based on Improved SSD.
- Source :
-
Sensors (14248220) . Sep2024, Vol. 24 Issue 18, p5910. 15p. - Publication Year :
- 2024
-
Abstract
- Aiming at the problems of a large volume, slow processing speed, and difficult deployment in the edge terminal, this paper proposes a lightweight insulator detection algorithm based on an improved SSD. Firstly, the original feature extraction network VGG-16 is replaced by a lightweight Ghost Module network to initially achieve the lightweight model. A Feature Pyramid structure and Feature Pyramid Network (FPN+PAN) are integrated into the Neck part and a Simplified Spatial Pyramid Pooling Fast (SimSPPF) module is introduced to realize the integration of local features and global features. Secondly, multiple Spatial and Channel Squeeze-and-Excitation (scSE) attention mechanisms are introduced in the Neck part to make the model pay more attention to the channels containing important feature information. The original six detection heads are reduced to four to improve the inference speed of the network. In order to improve the recognition performance of occluded and overlapping targets, DIoU-NMS was used to replace the original non-maximum suppression (NMS). Furthermore, the channel pruning strategy is used to reduce the unimportant weight matrix of the model, and the knowledge distillation strategy is used to fine-adjust the network model after pruning, so as to ensure the detection accuracy. The experimental results show that the parameter number of the proposed model is reduced from 26.15 M to 0.61 M, the computational load is reduced from 118.95 G to 1.49 G, and the mAP is increased from 96.8% to 98%. Compared with other models, the proposed model not only guarantees the detection accuracy of the algorithm, but also greatly reduces the model volume, which provides support for the realization of visible light insulator target detection based on edge intelligence. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FEATURE extraction
*VISIBLE spectra
*PYRAMIDS
*NECK
*ALGORITHMS
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 18
- Database :
- Academic Search Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 179964574
- Full Text :
- https://doi.org/10.3390/s24185910