Back to Search
Start Over
Unlocking Giant Third‐Order Optical Nonlinearity in (MA)2CuX4 through Introducing Jahn‐Teller Distortion.
- Source :
-
Angewandte Chemie International Edition . 9/16/2024, Vol. 63 Issue 38, p1-9. 9p. - Publication Year :
- 2024
-
Abstract
- Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn–Teller distortion in a Mott‐Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW−1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10−5 J cm−2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4− octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott‐Hubbard band structure of the materials, coupled with the Jahn–Teller distortion‐induced d‐d transition. This study not only introduces a promising category of high‐performance NLO materials but also provides novel insights into enhancing the performance of such materials. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14337851
- Volume :
- 63
- Issue :
- 38
- Database :
- Academic Search Index
- Journal :
- Angewandte Chemie International Edition
- Publication Type :
- Academic Journal
- Accession number :
- 179945776
- Full Text :
- https://doi.org/10.1002/anie.202406941