Back to Search
Start Over
The impact of acute low salinity stress on Antarctic echinoderms.
- Source :
-
Proceedings of the Royal Society B: Biological Sciences . 9/18/2024, Vol. 291 Issue 2031, p1-12. 12p. - Publication Year :
- 2024
-
Abstract
- Climate change is causing increased coastal freshening in Antarctica, leading to reduced salinity. For Antarctica's endemic echinoderms, adapted to the stable polar environment, the impact of rapid reductions in coastal salinity on physiology and behaviour is currently unknown. Six common Antarctic echinoderms (the sea urchin Sterechinus neumayeri; the sea star Odontaster validus; the brittle star Ophionotus victoriae; and three sea cucumbers Cucumaria georgiana, Echinopsolus charcoti and Heterocucumis steineni), were directly transferred from ambient salinity (34.5‰) to a range of salinity dilutions (29–9‰) for 24 h. All species showed reduced activity and the establishment of a temporary osmotic gradient between coelomic fluid and external seawater. Most species exhibited a depression in oxygen consumption across tolerated salinities; however, at very low salinities that later resulted in mortality, oxygen consumption increased to levels comparable to those at ambient. Low salinity tolerance varied substantially between species, with O. victoriae being the least tolerant (24 h LC50 (lethal for 50% of animals) = 19.9‰) while E. charcoti and C. georgiana demonstrated the greatest tolerance (24 h LC50 = 11.5‰). These findings demonstrate the species-specific response of Antarctica's endemic echinoderms to short-term hypoosmotic salinity events, providing valuable insight into this phylum's ability to respond to an underreported impact of climate change. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09628452
- Volume :
- 291
- Issue :
- 2031
- Database :
- Academic Search Index
- Journal :
- Proceedings of the Royal Society B: Biological Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 179871790
- Full Text :
- https://doi.org/10.1098/rspb.2024.1038