Back to Search Start Over

Interaction of simultaneous hypoxia and baroreflex loading on control of sympathetic action potential subpopulations.

Authors :
Boyes, Natasha G.
Klassen, Stephen A.
Baker, Sarah E.
Nicholson, Wayne T.
Joyner, Michael J.
Shoemaker, J. Kevin
Limberg, Jacqueline K.
Source :
Journal of Neurophysiology. Sep2024, Vol. 132 Issue 3, p1087-1097. 11p.
Publication Year :
2024

Abstract

Efferent muscle sympathetic nerve activity (MSNA) is under tonic baroreflex control. The arterial baroreflex exerts the strongest influence over medium-sized sympathetic action potential (AP) subpopulations in efferent MSNA recordings. Prior work from multiunit MSNA recordings has shown baroreflex loading selectively abolishes the sympathetic response to hypoxia. The purpose of the study was to examine baroreflex control over different-sized AP clusters and characterize the neural recruitment strategies of sympathetic AP subpopulations with baroreflex and combined baroreflex/chemoreflex (i.e., hypoxia) activation. We loaded the arterial baroreceptors [intravenous phenylephrine (PE)] alone and in combination with systemic hypoxia (S p O 2 80%) in nine healthy young men. We extracted sympathetic APs using the wavelet-based methodology and quantified baroreflex gain for individual AP clusters. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability versus diastolic blood pressure for 10 normalized clusters. Baroreflex loading with phenylephrine decreased MSNA and AP firing compared with baseline (all P < 0.05). However, the phenylephrine-mediated decrease in AP firing was lost with concurrent hypoxia (P = 0.384). Compared with baseline, baroreflex loading reduced medium-sized AP cluster baroreflex threshold slope (condition P = 0.005) and discharge probability (condition P < 0.0001); these reductions from baseline were maintained during simultaneous hypoxia (both P < 0.05). Present findings indicate a key modulatory role of the baroreceptors on medium-sized APs in blood pressure regulation that withstands competing signals from peripheral chemoreflex activation. NEW & NOTEWORTHY: This study provides a novel understanding on baroreflex control of efferent sympathetic nervous system activity during competing stressors: baroreflex loading and peripheral chemoreflex activation. We show chemoreflex activation buffers baroreflex-mediated reductions in sympathetic nervous system activity. More importantly, baroreflex loading reduced baroreflex threshold gain of sympathetic action potential clusters and this reduction withstood chemoreflex activation. These data suggest the arterial baroreflex holds a primary regulatory role over medium-sized sympathetic neurons despite competing chemoreflex signals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223077
Volume :
132
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Neurophysiology
Publication Type :
Academic Journal
Accession number :
179765102
Full Text :
https://doi.org/10.1152/jn.00277.2024