Back to Search Start Over

The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2.

Source :
Geoscientific Model Development Discussions. 9/19/2024, p1-25. 25p.
Publication Year :
2024

Abstract

Modeling and observational techniques are pivotal in aerosol research, yet each approach exhibits inherent limitations. Aerosol observation is constrained by its limited spatial and temporal coverage compared to models. On the other hand, models tend to possess higher uncertainties and biases compared to observations. Aerosol data assimilation has gained popularity as it combines the advantages of both methods. Despite numerous studies in this domain, few have addressed the challenges faced in assimilating aerosol data with significant differences in magnitude and degree of freedom between the model state and observations, especially in the vertical direction. These challenges can lead to the preservation or even exacerbation of structural inaccuracies within the assimilation process. This study investigates the sensitivity of dust aerosol data assimilation to the vertical structure of the aerosol profile. We assimilate a variety of dust observations, encompassing ground-based particulate matter (PM10) measurements and satellite-derived dust optical depth (DOD) data, using the Ensemble Kalman Filter (EnKF). The assimilation process is elucidated, detailing the assimilation of raw ground-based and satellite-based observations for an optimized three-dimensional (3D) posterior state. To demonstrate the impact of accurate versus erroneous prior aerosol vertical profiles on the assimilation result, we select three cases of super dust storms for analysis. Our findings reveal that the assimilation of ground observations would optimize the dust field at the ground in general. However, the vertical structure presents a more complex challenge. When the prior profile accurately reflects the true vertical structure, the assimilation process can successfully preserve this structure. Conversely, if the prior profile introduces an incorrect structure, the assimilation can significantly deteriorate the integrity of the aerosol profile. This is also found in the assimilation of DOD, which exhibits a comparable pattern in its sensitivity to the initial aerosol profile's accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
179733397
Full Text :
https://doi.org/10.5194/gmd-2024-113