Back to Search
Start Over
Greener tool for synthesis and characterization of textile fabric's coatings for good flame retardancy, antibacterial and reinforcement properties.
- Source :
-
Journal of Thermal Analysis & Calorimetry . Sep2024, Vol. 149 Issue 17, p9131-9143. 13p. - Publication Year :
- 2024
-
Abstract
- Green and facile route was employed for development of smart flame-retardant, antibacterial and reinforced textile fabric's coatings. The multifunctional coatings were fabricated from sustainable chitosan functionalized via one pot method with α-aminophosphonates with different groups (methyl and phenyl groups). Phenyl- and methyl-based α-aminophosphonates were grafted on chitosan chains individually. Additionally, magnetic chitosan-Fe3O4 nanoparticles functionalized α-aminophosphonates-based phenyl moiety were also prepared. Moreover, tetra-n-butylammonium hexafluorophosphate was also dispersed in coating dispersion. The different prepared functionated chitosan was then exploited as efficient flame-retardant, reinforced and antibacterial-based multifunctional coatings for cotton fabrics. Different mass loadings of methyl- and phenyl-based functionalized chitosan and magnetic chitosan were dispersed in chitosan solution and then coated on cotton surface. The influence of mass loading and different side groups was studied. Flammability, tensile strength and antibacterial properties of developed cotton fabrics were evaluated. The flammability of coated cotton fabrics was strongly improved achieving reduction in rate of burning by 48% compared to uncoated one. This is in addition to LOI value of 23.5% compared to 18% for uncoated fabric. This is due to the influence of organic phosphate in coating layer which stimulates the formation of protective char layer. The tensile strength of coated fabrics was improved recording 29% enhancement compared to uncoated one. Moreover, the developed coating layer strongly inhibits the growth of well-known bacterial strains Escherichia coli and Staphylococcus aureus, achieving clear antibacterial inhibition zones of 16.7 and 23.6 mm, respectively. Additionally, the flame retardancy mechanism was proposed and elucidated. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FIREPROOFING
*COATED textiles
*COTTON textiles
*PHENYL group
*TEXTILES
Subjects
Details
- Language :
- English
- ISSN :
- 13886150
- Volume :
- 149
- Issue :
- 17
- Database :
- Academic Search Index
- Journal :
- Journal of Thermal Analysis & Calorimetry
- Publication Type :
- Academic Journal
- Accession number :
- 179711838
- Full Text :
- https://doi.org/10.1007/s10973-024-13524-7