Back to Search Start Over

Analysis of Unburned Methane Emission Mechanisms in Large-Bore Natural Gas Engines With Prechamber Ignition.

Authors :
Patterson, Mark. A.
Xie, Nelson
Beurlot, Kyle
Jacobs, Timothy
Olsen, Daniel
Source :
Journal of Engineering for Gas Turbines & Power. Oct2024, Vol. 146 Issue 10, p1-11. 11p.
Publication Year :
2024

Abstract

Although precombustion chambers, or prechambers, have long been employed for improving large-bore two-stroke natural gas engine ignition and combustion stability, their design predates modern analysis techniques. Employing the latest computational fluid dynamics (CFD) modeling techniques, this study investigates the importance of temperature and chemistry for ignition of the main chamber, with an emphasis on eliminating unburned methane. The sensitivity of the ignition and complete combustion to main chamber air/fuel mixture homogeneity was also explored. This study compares the effect of purely thermal ignition, purely chemical ignition, and how their interplay can influence the complete combustion of methane in typical mixtures and in homogeneous distributions of fuel in the combustion chamber. The CFD results demonstrated that temperature and chemistry are equally important in the ignition mechanism, and combining the two phenomena is effective at igniting the main chamber. Reduction of residual methane in the main combustion chamber (MCC) is most effective when chemical intermediates and thermal ignition are combined. A rudimentary analysis of the effect of fuel/air stratification was also conducted, and it demonstrated that a dramatic reduction in methane emissions is observed for homogeneous mixtures. The flow field in the main combustion chamber was shown to create detrimental stratification of the fuel/air mixture, which inhibited complete combustion of the methane in the main chamber. By contrast, in the extreme case of a perfectly homogeneous distribution of both chemical intermediates and fuel in the combustion chamber, it is possible to completely eliminate unburned methane in the main combustion chamber. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07424795
Volume :
146
Issue :
10
Database :
Academic Search Index
Journal :
Journal of Engineering for Gas Turbines & Power
Publication Type :
Academic Journal
Accession number :
179679227
Full Text :
https://doi.org/10.1115/1.4065313