Back to Search
Start Over
Simulation of Novel Nano Low-Dimensional FETs at the Scaling Limit.
- Source :
-
Nanomaterials (2079-4991) . Sep2024, Vol. 14 Issue 17, p1375. 11p. - Publication Year :
- 2024
-
Abstract
- The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices. Through continuous parameter scaling and extracting the sub-threshold swing (SS) and DIBL from the electrical outputs, we offered optimal MoS2 layer numbers and single-walled carbon nanotube (SWCNT) diameters, as well as designed structures for multi-gate FETs based on monolayer MoS2, identifying dual-gate transistors as suitable for high-speed switching applications. Comparing the switching performance of two device types at the same node revealed CNT's advantages as a channel material in mitigating SCEs at sub-3 nm nodes. We validated the performance enhancement of 2D materials in the novel device architecture and reduced the complexity of the related experimental processes. Consequently, our research provides crucial insights for designing next-generation high-performance transistors based on low-dimensional materials at the scaling limit. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 14
- Issue :
- 17
- Database :
- Academic Search Index
- Journal :
- Nanomaterials (2079-4991)
- Publication Type :
- Academic Journal
- Accession number :
- 179645406
- Full Text :
- https://doi.org/10.3390/nano14171375