Back to Search Start Over

Advancing Prostate Cancer Diagnosis: A Deep Learning Approach for Enhanced Detection in MRI Images.

Authors :
Horasan, Alparslan
Güneş, Ali
Source :
Diagnostics (2075-4418). Sep2024, Vol. 14 Issue 17, p1871. 24p.
Publication Year :
2024

Abstract

Prostate cancer remains a leading cause of mortality among men globally, necessitating advancements in diagnostic methodologies to improve detection and treatment outcomes. Magnetic Resonance Imaging has emerged as a crucial technique for the detection of prostate cancer, with current research focusing on the integration of deep learning frameworks to refine this diagnostic process. This study employs a comprehensive approach using multiple deep learning models, including a three-dimensional (3D) Convolutional Neural Network, a Residual Network, and an Inception Network to enhance the accuracy and robustness of prostate cancer detection. By leveraging the complementary strengths of these models through an ensemble method and soft voting technique, the study aims to achieve superior diagnostic performance. The proposed methodology demonstrates state-of-the-art results, with the ensemble model achieving an overall accuracy of 91.3%, a sensitivity of 90.2%, a specificity of 92.1%, a precision of 89.8%, and an F1 score of 90.0% when applied to MRI images from the SPIE-AAPM-NCI PROSTATEx dataset. Evaluation of the models involved meticulous pre-processing, data augmentation, and the use of advanced deep-learning architectures to analyze the whole MRI slices and volumes. The findings highlight the potential of using an ensemble approach to significantly improve prostate cancer diagnostics, offering a robust and precise tool for clinical applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754418
Volume :
14
Issue :
17
Database :
Academic Search Index
Journal :
Diagnostics (2075-4418)
Publication Type :
Academic Journal
Accession number :
179645279
Full Text :
https://doi.org/10.3390/diagnostics14171871