Back to Search Start Over

Real-Time Impedance Detection for PEM Fuel Cell Based on TAB Converter Voltage Perturbation.

Authors :
Zhou, Jialong
Jiang, Jinhai
Fan, Fulin
Sun, Chuanyu
Dong, Zhen
Song, Kai
Source :
Energies (19961073). Sep2024, Vol. 17 Issue 17, p4320. 15p.
Publication Year :
2024

Abstract

Fuel cells, as clean and efficient energy conversion devices, hold great potential for applications in the fields of hydrogen-based transportation and stand-alone power systems. Due to their sensitivity to load parameters, environmental parameters, and gas supply, the performance monitoring and fault diagnosis of fuel cell systems have become crucial research areas. Electrochemical impedance spectroscopy (EIS) is a widely applied analytical method in fuel cell systems. that can provide rich information about dynamic system responses, internal impedance, and transmission characteristics. Currently, EIS detection is primarily implemented by using simple topologies such as boost circuits. However, the injection of excitation signals often results in significant power fluctuations, leading to issues such as uneven temperature distributions within the cell, unstable gas supply, and damage to the proton exchange membrane. To address this issue, this paper proposes a real-time EIS detection technique for a proton exchange membrane fuel cell (PEMFC) system that connects a lithium-ion battery and injects the load voltage perturbation through a triple active bridge (TAB) converter. By applying the small-signal model of the TAB converter and designing a system controller using a decoupling control method, the PEMFC power remains stable after the disturbance injection across the entire frequency range under tests. Furthermore, the lithium-ion battery can instantly track load changes during fluctuations. The proposed EIS detection method can acquire EIS data in real time to monitor the state of the PEMFC. Simulation results validate the effectiveness and accuracy of the proposed method for EIS detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
17
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
179645037
Full Text :
https://doi.org/10.3390/en17174320