Back to Search Start Over

Permittivity enhancement of Al2O3/ZrO2 dielectrics with the incorporation of Pt nanoparticles.

Authors :
Zhu, Bao
Shang, Ze
Wang, Chenyan
Wu, Xiaohan
Zhang, David Wei
Source :
Journal of Applied Physics. 9/14/2024, Vol. 136 Issue 10, p1-6. 6p.
Publication Year :
2024

Abstract

Al2O3/ZrO2 (A/Z) layers with embedded Pt nanoparticles (Pt-nps) at the interface of A/Z have been used to create a dielectric film with an enhanced permittivity. The Pt-nps and dielectrics are both grown by the atomic layer deposition process, which is complementary metal–oxide–semiconductor compatible. In order to control the thickness ratio of Pt-nps in the overall dielectrics more easily, the thickness of the ZrO2 layer is changed from 12 to 30 nm with a fixed thickness of 12 nm for Al2O3 and constant growth cycles of 70 for Pt-nps. The results show that the introduction of Pt-nps is beneficial to the enhancement of the dielectric permittivity. As the thickness of ZrO2 is 30 nm, the capacitance density increases from 2.5 to 5.1 fF/μm2 with the addition of Pt-nps, i.e., a doubling of the capacitance density achieved. Additionally, the leakage current at 2 V increases from 1.1 × 10−8 to 1.5 × 10−7 A/cm2. Furthermore, the dielectric breakdown field decreases from 5.4 to 2.7 MV/cm. The electric field distribution simulation and charging–discharging test imply that interfacial polarization is built at the interface of Pt-nps and the dielectric films, which contributes to the dielectric permittivity enhancement, and local electric field increasing in the affinity of Pt-nps gives rise to the deterioration of the leakage current and breakdown electric field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
136
Issue :
10
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
179640150
Full Text :
https://doi.org/10.1063/5.0218456