Back to Search
Start Over
AI performance by mammographic density in a retrospective cohort study of 99,489 participants in BreastScreen Norway.
- Source :
-
European Radiology . Oct2024, Vol. 34 Issue 10, p6298-6308. 11p. - Publication Year :
- 2024
-
Abstract
- Objective: To explore the ability of artificial intelligence (AI) to classify breast cancer by mammographic density in an organized screening program. Materials and method: We included information about 99,489 examinations from 74,941 women who participated in BreastScreen Norway, 2013–2019. All examinations were analyzed with an AI system that assigned a malignancy risk score (AI score) from 1 (lowest) to 10 (highest) for each examination. Mammographic density was classified into Volpara density grade (VDG), VDG1–4; VDG1 indicated fatty and VDG4 extremely dense breasts. Screen-detected and interval cancers with an AI score of 1–10 were stratified by VDG. Results: We found 10,406 (10.5% of the total) examinations to have an AI risk score of 10, of which 6.7% (704/10,406) was breast cancer. The cancers represented 89.7% (617/688) of the screen-detected and 44.6% (87/195) of the interval cancers. 20.3% (20,178/99,489) of the examinations were classified as VDG1 and 6.1% (6047/99,489) as VDG4. For screen-detected cancers, 84.0% (68/81, 95% CI, 74.1–91.2) had an AI score of 10 for VDG1, 88.9% (328/369, 95% CI, 85.2–91.9) for VDG2, 92.5% (185/200, 95% CI, 87.9–95.7) for VDG3, and 94.7% (36/38, 95% CI, 82.3–99.4) for VDG4. For interval cancers, the percentages with an AI score of 10 were 33.3% (3/9, 95% CI, 7.5–70.1) for VDG1 and 48.0% (12/25, 95% CI, 27.8–68.7) for VDG4. Conclusion: The tested AI system performed well according to cancer detection across all density categories, especially for extremely dense breasts. The highest proportion of screen-detected cancers with an AI score of 10 was observed for women classified as VDG4. Clinical relevance statement: Our study demonstrates that AI can correctly classify the majority of screen-detected and about half of the interval breast cancers, regardless of breast density. Key Points: • Mammographic density is important to consider in the evaluation of artificial intelligence in mammographic screening. • Given a threshold representing about 10% of those with the highest malignancy risk score by an AI system, we found an increasing percentage of cancers with increasing mammographic density. • Artificial intelligence risk score and mammographic density combined may help triage examinations to reduce workload for radiologists. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09387994
- Volume :
- 34
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- European Radiology
- Publication Type :
- Academic Journal
- Accession number :
- 179636513
- Full Text :
- https://doi.org/10.1007/s00330-024-10681-z